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Total energy calculations on zinc sulphide polytypes 

G E Engel and R J Needs 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 5 October 1989 

Abstract. We report the results of first-principles pseudopotential calculations of the total 
energies of the (l), (a), (2211), (2) and (3) polytypes of ZnS. These results are compared with 
previous work on S ic  polytypes. The lowest energy ZnS polytype is calculated to be (m), 
in agreement with the experimental observation that (=) is the stable low temperature 
modification. We find that, in contrast to Sic,  all ZnS polytypes are very close in energy. We 
discuss the implications of our results for theories of polytypism in ZnS. 

1. Introduction 

ZnS is the chemical symbol for the rather common natural mineral Zincblende, and we 
might therefore expect it to be the ideal example of a material crystallising in the 
corresponding zincblende structure. In fact ZnS forms in a large variety of different 
crystallographic modifications, known as polytypes. The structures of these polytypes 
are all very closely related and differ only in the way identical ZnS double layers (referred 
to as ‘layers’ hereafter) are stacked on top of one another along the c-direction of a 
hexagonal unit cell, yielding the bonding arrangement in the (1, - 1 , O )  plane shown in 
figure 1. Structures with periodicities of up to a few hundred Angstroms have been 
reported in experimental work (Mardix 1986). 

In this paper we present some calculations and a theoretical discussion which should 
lead to a better understanding of ZnS polytypes. Recently there has been a considerable 
amount of theoretical work on polytypism in S i c  (Cheng et a1 1987, 1988, 1989a, b), 
which has the same basic structure as ZnS. The picture that has emerged from this work 
is that the lowest energy S i c  polytypes belong to a subset with certain common structural 
features. There are a large number of members of this subset and they are almost 
degenerate in energy. Experimentally it is members of this lowest energy subset that are 
normally observed. This indicates that equilibrium thermodynamics plays a crucial role 
in determining which polytypes are observed and which are not. On the other hand it 
seems likely that other factors, such as the precise growth conditions and the presence 
of defects such as screw dislocations, are important in determining which member of the 
low energy subset is actually formed in an experiment. This work on S i c  has raised the 
question of whether a similar picture holdsfor ZnS. Interestingly the set of ZnS polytypes 
which are most commonly observed is quite different from that for Sic ,  even though the 
structures are formed from the same type of structural unit. While the commonly 
observed S i c  polytypes have very definite structural features in common, ZnS forms in 
a much wider variety of structures (Mardix 1986). 
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We will show that, in fact, a roughly similar picture does hold for ZnS as for Sic,  
with both equilibrium and non-equilibrium properties playing important roles. The 
precise nature of the equilibrium and non-equilibrium properties of ZnS and S ic  are 
different from one another and consequently the commonly observed polytypes are 
different. In a separate paper (Engel 1989) we will discuss the detailed mechanisms 
which we believe are responsible for the formation of the particular ZnS structures, but 
in this paper we will confine ourselves to answering the following questions: 

(a) Is there a thermodynamic reason favouring the phenomenon of polytypism in 
ZnS? 

(b) What is the main difference between S ic  and ZnS which allows ZnS to form a 
much larger variety of structures? 

The answers to these questions must be sought at the atomic level: a fully quantum- 
mechanical calculation of the total energies of the different polytypes is required. 

2. Structures of ZnS and Sic polytypes 

We use the Zhdanov notation (Zhdanov 1945) to label the different structures. This 
notation is based on a representation of the layer sequence of a given polytype by a row 
of spins, where up and down spins represent the two ways a double layer can be stacked 
on top of the preceding one (see figure 1). The Zhdanov numbers simply give the widths 
of bands of parallel spins. Hence the cubic (zincblende) structure 
( .  . 1 f t f t t t t . . )  is written as (x.), the hexagonal (wurtzite) structure 
( .  . t .1 t 1 t J, t 1 . .)  as (1) and the structure ( .  . f t f J, 1 1 t t t . . )  as (3). 

The observed structures of ZnS are quite different from those of Sic .  Whereas the 
S ic  polytypes consist mostly of bands of width 2 and 3 with no Is occurring except in the 
rare hexagonal modification, the list of almost 200 ZnS polytypes given, for example, 
by Mardix (1986) shows a much larger variety of bandwidths. It is striking that very long 
and very short bands coexist in many of these structures, which is not found for Sic .  
Also, a small number of polytypes contain Is in combination with larger bands. 
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It is difficult to determine any definite temperature stability ranges from ex- 
perimental data even for the simplest polytypes in the two materials. However, some 
important differences between growth conditions in S i c  and ZnS are worth mentioning. 
For both materials, polytypic crystals are often obtained by growing them from the 
vapour phase; for S i c  at temperatures above 2000 "C and for ZnS between 1300 "C and 
1400 "C. The high temperature phase of ZnS is the hexagonal modification (l), which 
undergoes a phase transition to the cubic modification (w) at about 1020 "C (Allen 1912). 
Detailed investigations by Mardix eta1 (1970) have shown that, in whiskers grown from 
the vapour phase, this transformation is often incomplete and results in polytypic layer 
arrangements. 

In S ic ,  the high temperature modification is believed to be (3), but below 2000 "C 
the experimental findings are often contradictory, and transformations between all sorts 
of structures take place depending on the temperature, applied pressure and the presence 
of impurities (see, for example, Pandey and Krishna (1982)). It is not really clear what 
the low temperature modification of this material is. Theoretical work (Cheng etal1987, 
Cheng et a1 1989a) predicts that either (2) or (3) is the stable modification at low 
temperatures, these two being almost precisely degenerate. If this is correct, the fre- 
quently observed cubic modification is a result of the growth process rather than a 
thermodynamically stable phase. 

3. Calculations of the total energies of ZnS polytypes 

To evaluate the total energies, we used a plane wave pseudopotential technique 
formulated within density functional theory and using the Ceperley-Alder form of the 
local density approximation for the exchange-correlation energy (Ceperley and Alder 
1980, Perdew and Zunger 1981). Excellent reviews of the total energy pseudopotential 
method, and applications of it, can be found in the articles by Srivastava and Weaire 
(1987) and Ihm (1988). In this technique the wavefunctions and potentials are expanded 
in a plane wave basis set and the resulting matrix equations solved self-consistently. In 
our work we use an efficient iterative diagonalisation scheme to solve the matrix 
equations (Nex 1987, Hodgson and Nex 1988). Integrations over the Brillouin zone were 
performed by sampling on a regular grid of points in reciprocal space using the method 
of Monkhorst and Pack (1976). The calculational techniques used in the present study 
are essentially identical to those employed in earlier work on S ic  polytypes (Cheng et 
a1 1987,1988,1989b). 

We have used norm-conserving pseudopotentials to represent the potentials of 
the zinc and sulphur ions. The sulphur pseudopotential was obtained from the tables 
calculated by Bachelet et a1 (1982). Because ZnS forms tetrahedrally coordinated struc- 
tures it is clear that the cohesion is predominantly due to sp3 hybrid bonding. This implies 
that the zinc 3d electrons may be treated as core electrons and removed from the problem 
in forming the pseudopotential. In fact, the zinc 3d orbitals are quite extended and there 
is a considerable overlap between the valence 4s orbitals and the 3d orbitals. In such 
cases one must be careful to treat the exchange-correlation energy properly. The 
problem is that the exchange-correlation energy is a non-linear functional of the charge 
density and hence cannot properly be divided into valence and core contributions, as 
would normally be done in a pseudopotential calculation. If, by forming the solid, the 
valence electron density in the small core region is changed significantly from its atomic 
form, then the exchange-correlation energy must be calculated from the sum of the 
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Table 1. Results of total energy calculations on the five ZnS polytypes, (l), (w) ,  (2211), (2) 
and (3), for different values of the plane wave cut-off energy EPW. The last two columns give 
the values of the inter-layer interaction parameters J ,  and J 2 .  All energies are given in eV 
per pair of ZnS atoms. 

EPW (1) (a) (2211) 

15 Ryd -334.724 78 -334.728 01 -334.725 96 
20 Ryd -335.551 56 -335.555 13 -335.552 85 
25 Ryd -335.793 98 -335.797 71 -335.795 32 

15 Ryd -334.726 55 -334.727 05 0.001 62 -0.000 08 
20 Ryd -335.553 50 -335.55406 0.001 79 -0.000 08 
25 Ryd -335.796 00 -335.796 59 0.001 87 -0.000 08 

valence and core charge densities. Such non-linear core exchange-correlation cor- 
rections were studied by Louie et al (1982) who produced a practical scheme for imple- 
menting such corrections which we have used in our work. A pseudopotential generated 
using the Kerker (1980) method and including these non-linear core exchange-cor- 
relation corrections greatly improved the results of calculations of various structural 
properties. For instance, the calculated lattice constant was only 3.5% less than the 
experimental value of 5.404 A, compared with an error of 13% if the corrections were 
not included. We have used this pseudopotential, including non-linear core exchange- 
correlation corrections, in all of the calculations on ZnS polytypes presented in this 
paper. A complete report of our calculations of the structural properties of cubic 
ZnS and the use of non-linear core exchange-correlation corrections will be published 
elsewhere (Engel and Needs 1989). 

The energy differences between the polytypes are very small and one must be very 
careful to ensure convergence of the calculations with respect to the size of the basis set 
and the sampling of the Brillouin zone. To test the convergence of the energy differences 
between polytypes with respect to the size of the basis set, we calculated the total energies 
of the five polytypes considered with three different basis set cut-off energies. These cut- 
off energies were 15 Ryd, 20 Ryd and, for our most accurate calculations, 25 Ryd. The 
results of these calculations are given in table 1, the convergence of the differences in 
total energies between polytypes is very good, and the error from this source is estimated 
to be less than eV per ZnS pair. Care must be taken to sample the wavefunctions 
at precisely equivalent points in reciprocal space for the different structures. The pro- 
cedure for this has been described in detail by Cheng eta1 (1988). All the structures were 
specified in terms of hexagonal unit cells whose heights were 2 , 3 , 4 , 6  and 6 ZnS double 
layers for the (l) ,  (CO), (2), (3) and (2211) structures respectively. The Brillouin zone 
integrations were performed by sampling reciprocal space on a grid of points arranged 
in a regularly spaced stack of planes with the stacking direction along the c-axis. Each 
plane contained 16 sampling points and to ensure equivalent k-point sampling for each 
structure we took 6 ,4 ,3 ,2  and 2 of these planes for the five structures respectively. Tests 
were also made by increasing the number of k-points sampled in the Brillouin zone 
integration, and the energy difference between the hexagonal and cubic structures was 
found to vary with k-point sampling by less than eV per ZnS pair. The error due to 
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Figure 2. Energies of the (l), (m), (2211), (2) and 

lack of self-consistency is completely negligible; all calculations were cycled until full 
self-consistency was reached. 

All of our calculations were performed with the atoms in their ‘ideal’ positions and 
with the experimental lattice constant a = 5.404/d2 A and the ideal c/a ratio. In reality, 
of course, the a and c lattice constants and the positions of the atomic planes in the c- 
direction undergo small relaxations. The effect of these relaxations was calculated by 
Cheng et a1 (1989b) for S i c  and found to be of the order of 5 X eV per S i c  pair and 
hence small on the scale of figure 2. In addition it is known from experiment that ZnS 
shows only very small variations in both c/a ratio and lattice parameter with hexagonality 
(Skinner 1961, Skinner and Bethke 1961). We therefore neglect the effect of structural 
relaxation in the present analysis. 

4. Results and analysis of the energies 

In this section we present the results of our total energy calculations for the five ZnS 
polytypes and analyse them in detail. The calculated energies for each structure are 
given in table 1. The energies, which correspond to the free energies at T = 0, may be 
modelled in terms of the interactions between ZnS layers, following Cheng et a1 (1988). 
By analogy with magnetic spin systems, we write the total energy for a stacking sequence 
of N layers as 

E = E ,  - J1 sisi+l - J 2  s i s i + 2  - J 3  s i s i + 3  - K x : s i s i + l s i + 2 s i + 3  (1) 
i i i i 

where si = +1 or -1 according to whether the layer has up or down spin. The J ,  are 
effective interactions between spins which can be related to the interactions between 
atomic layers. Equation (1) is the most general expression possible for inter-layer 
interactions up to third nearest neighbours (Shaw and Heine 1989). 
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The energies of the five different polytypes can be expressed in terms of the energy 
expression of equation (1) giving 

E(1) =Eo  + J1 - J2 + J3 - K 

E(2) = Eo + J 2  - K  

E(3, = Eo - $J1 + $J2 + J3 + AK. 

For each energy cut-off, the Js and K were determined by inverting this equation. In 
each case the values of J3 and K were found to be completely negligible. Therefore the 
final values of J1 and J2 were obtained from a least squares fit of the calculated energies 
to the parametrisation of equation (2), setting J3 and K to zero. The results for J1 and J2 
are listed in table 1. The differences between fitted and calculated energies never exceeds 
2 X eV per ZnS pair. Any longer ranged interactions are therefore believed to be 
at least one order of magnitude smaller than J2. Our most accurate energies for ZnS 
give: 

J 1  = 0.00187 eV per ZnS pair 

J2 = -0.00008 eV per ZnS pair. 

J3 negligible. 

K negligible. 
(3) 

The precise value ofJ2is beyond the accuracy of our calculations, but we can be confident 
that it is extremely small. For comparison we give the corresponding values for S i c  
found by Cheng et aZ(l988): 

J, = 0.00533 eV per S ic  pair. 

J2 = -0.00342 eV per S i c  pair. 

J3 = -0.00039 eV per S i c  pair. 

K = -0.00021 eV per S ic  pair. 
(4) 

The values of J1, J2, J3 and K determine which polytypes are thermodynamically stable. 
J1 is calculated to be positive for both S i c  and ZnS. This interaction favours spin 
arrangements where neighbouring spins are parallel to one another. If a structure other 
than the cubic one is to be stabilised as an equilibrium phase within this inter-layer 
interaction model, then J2 must be of opposite sign and of similar magnitude to J1 
(alternatively, if J1 = J2 = J3 = K = 0, then obviously all polytypes are degenerate). For 
S ic  Cheng et a1 (1988) found that the parameters (which are given in equation (4) of this 
paper) almost exactly satisfy the conditions J1 > 0, J2 < 0, J3 < 0 and J 1  + 2J2 - 3J3 = 
0. For this choice of parameters, all polytypes containing 2- and 3-bands are degenerate 
in energy and lower in energy than any polytype containing bands of width other than 2 
or 3. This explains why 2s and 3s are so common in this material. Also, in this picture 
very small variations in the values of the inter-layer interaction parameters with tem- 
perature or pressure could lead to transitions between the phases. The inclusion of 
longer ranged interactions may result in an even more complicated phase diagram, with 
an even larger number of stable phases for different values of the interaction parameters. 
However, it is doubtful whether such longer ranged interactions, which are certainly 
extremely small, are really more important in determining which structures are observed 
than other effects arising from the particular growth conditions. Rather, the structures 
may well be metastable in the strict thermodynamic sense, but the energy calculations 
have clearly shown that they are close to being equilibrium phases. 
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In ZnS, the story is essentially the same; the commonly observed polytypes turn out 
to be very close in energy. Here, J1 is a factor of about 3 smaller than in S ic ,  while the 
calculated value ofJ2 is a factor of about 40 smaller than in Sic ,  although as we mentioned 
above, in ZnS, J 2  is so small that we cannot give a precise value for it. The smallness of 
the inter-layer interaction parameters explains why the range of bands covered by ZnS 
polytypes is larger than for S ic .  In particular, the energy difference between narrow 
and wide bands, which is mainly determined by J1, is small enough to allow their 
coexistence in a single polytype. The main contribution to the energies is fromJ1, which 
makes the cubic modification the thermodynamically stable one at low temperatures. 
This is in good agreement with experiment (Pandey and Krishna 1982). 

Figure 2 illustrates the energy range covered by various ZnS, S i c  and Si polytypes. 
The energies, calculated from the interaction parameters, are plotted on an equal energy 
scale. The interaction parameters for Si were deduced from the stacking fault energies 
calculated by Chou et a1 (1985), with the assumption that only J 1  andJ2 are significant, 
givingl, = 0.0078 eV and J 2  = -0.0014 eVper pair of Si atoms. These calculations were 
performed using techniques which are essentially identical to those of the present work. 
The plot shows that the energy range for the polytypes that are commonly observed in 
nature (those below the dotted line in figure 2) is rather similar for ZnS and Sic ,  but 
that this includes a larger variety of polytypes in ZnS than in Sic .  In Si normally only 
the cubic structure is observed, which is now easily understood from the comparatively 
large stacking fault energies in this material. Polytypes above the dotted line in figure 2 
may be observed under some circumstances. For instance, in S ic  the (I) polytype may 
be formed under some growth conditions (Pandey and Krishna 1982), in ZnS the (1) 
polytype is quite common (Pandey and Krishna 1982) and, for Si, samples containing 
small regions of the (1) phase may be obtained from (E) by a process involving the 
application of stress (Wentorf and Kaspar 1963). 

The fact that we calculate lower energies for those strwtures which are most com- 
monly found in nature indicates that the differences in total energies at T = 0 do indeed 
influence the stability of the various structures. However, at finite temperatures other 
effects may become important and alter the energy diagrams in figure 2. For example 
the contribution to the free energy from phonons will be different for the different 
polytypes, giving rise to temperature dependent interaction parameters I,, and K.  A 
detailed analysis of this effect has been carried out for S i c  by Cheng et a1 (1989a). At 
the high temperatures of growth, of about 2500 K,  the following contributions were 
found (Cheng et a1 1989a): 

J 1  ( T  = 2500 K) - J1 ( T  = 0)  = 2.398 X 

J2(T = 2500 K) - J 2 ( T  = 0) = 0.215 x 

J 3 ( T =  2500 K) - J , ( T =  0) = 0.042 X 

K(T = 2500 K) - K(T = 0 )  = -0.045 x 

eV per S ic  pair. 

eV per S i c  pair. 

eV per S i c  pair. 
( 5 )  

eV per S ic  pair. 

The temperature dependences of the interaction parameters are rather small and, even 
at the high temperatures of growth, the S ic  polytypes containing only 2- and 3-bands 
are still almost degenerate and more stable than any of the other polytypes. 

As mentioned above, it is known from experiment that there is a phase transition 
from the cubic (E) phase to the hexagonal (1) phase at about 1100 "C in ZnS. Hence we 
conclude that the phonon contribution should invert the diagram for ZnS in figure 2. 
However, a detailed analysis of the phonon contribution to the total free energies has 
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not yet been carrried out. It is somewhat surprising to assume that the phonons should 
give a contribution large enough to change the sign ofJ1, especially as this would require 
them to favour the hexagonal structure in ZnS whereas they favour the cubic structure 
in Sic .  Whether the effect of the phonons is indeed different for the two materials has 
to be left open to future investigation. Of course it is also possible that the errors in our 
calculations are substantiai on the small scale of the energy differences between ZnS 
polytypes and that in reality J1 is smaller than we have calculated. 

It is known from experiment (Mardix et a1 1987) that the solid state transformation 
from the hexagonal to the cubic phase plays an important role in the formation of 
polytypes in ZnS. This feature makes ZnS quite different from Sic ,  where polytypic 
structures are likely to be formed during growth itself. At the temperatures of growth 
(1400 "C), ZnS crystals are almost certainly formed in the hexagonal phase. During 
annealing, partial transformations take place, probably via a periodic slip mechanism 
where single stacking faults expand along the helical basal planes provided by a screw 
dislocation (Alexander et a1 1970). Such a mechanism is able to explain the periodicity 
of the observed structures. In this sense, polytypes in ZnS can probably not be fully 
understood in terms of purely equilibrium thermodynamic considerations, and a deeper 
understanding of the dynamics of the phase transition is required. However, any trans- 
formation mechanism will drive the structure towards a thermodynamically more stable 
one, and in this sense the knowledge of the free energies is important whatever the 
detailed mechanism of the transformation turns out to be. 

5. Conclusions 

Perhaps the most striking feature of our results is that we find that all possible ZnS 
polytypes are very close in energy. This does not follow simply from the fact that ZnS 
forms polytypes; indeed Sic ,  which exhibits polytypism and has the same basic structure 
as ZnS, is a counter example. In S ic ,  polytypes containing only 2- and 3-bands are 
almost degenerate in energy and all other polytypes are higher in energy. We believe 
that this is the reason why 2s and 3s are so common in the structures of S i c  polytypes. 
The fact that all ZnS polytypes are close in energy is probably the reason why it forms 
such a wide variety of polytypes. However, our calculations have also shown that the 
remaining small differences in energy between the ZnS polytypes are mainly determined 
by their degree of hexagonality, making the cubic phase the most stable one at low 
temperatures. This is important because it gives a thermodynamic driving force for the 
phase transition between the (1) and (x) polytypes at low temperatures, as the stacking 
fault energy of a cubic stacking fault in a hexagonal crystal will be negative. It is likely 
that the (1) phase is stable at the temperatures of growth and that, on cooling, a solid 
state transition towards the (E) phase results in polytype formation. 

Another interesting result of our investigation is the short range of the inter-layer 
interaction parameters. In contrast to Sic ,  these are found to be significant only up to 
next nearest neighbour layers, and the dominant contribution to the total enegies is from 
nearest neighbour interactions J1. The parameter J2 is a factor of about 40 smaller than 
the corresponding parameter in S ic ,  and the ratio Jl/lJ21 changes from 1.6 in S i c  to 23 
in ZnS. It is possible that the short range of the interactions also plays an important role 
in the transition from the hexagonal to the cubic phase which occurs during cooling. 
With only nearest neighbour interactions being significant, a single cubic stacking fault 
in a hexagonal crystal will not tend to nucleate a transformation to the cubic phase. This 



Total energy calculation on ZnS polytypes 375 

is because, if the atomic process of the transformation is assumed to be the subsequent 
introduction of single stacking faults into the crystal, it is, in the absence of longer ranged 
interactions, energetically no more favourable to introduce a second stacking fault in 
the immediate vicinity of the first than anywhere else. Rather than creating a large cubic 
domain, the transformation results in a number of small cubic domains of varying size 
separated by hexagonal regions. Screw dislocations provide a plausible explanation for 
the periodicity of the incompletely transformed structures (Alexander et a1 1970). In a 
separate paper (Engel 1989), these ideas will be extended to a simple dynamical model 
for the wurtzite to zincblende transition in ZnS in the presence of a suitable screw 
dislocation, which is based on the stacking fault energies calculated from the present 
work. This model gives a good account of the polytypic sequences in ZnS that are actually 
observed. 

6. Summary 

In summary we have calculated the total energies of five ZnS polytypes using first- 
principles pseudopotential techniques. The lowest energy polytype is calculated to be 
(m), in agreement with the experimental observation that (m)  is the stable modification 
at low temperatures. In contrast to S i c  and Si, all possible polytypes of ZnS are very 
close in energy. We believe that this is the thermodynamic reason for polytype formation 
in ZnS and also the reason why a wider variety of different ZnS polytype structures is 
observed as compared with S ic .  For both ZnS and Sic ,  the polytypes most commonly 
observed are indeed those with the lowest structural energies, and the energy range 
covered by them in the two materials is roughly equal and very small. It is likely that at 
high temperatures the (1) phase is stable and that the polytypes are formed by a solid 
state transition towards the (a) phase which occurs during cooling. 
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